An initial assessment of coupled land-atmosphere *memory* in (and beyond) reanalysis

Paul Dirmeyer, Zhichang Guo, Subhadeep Halder, Holly Norton and Jiexia Wu

Center for Ocean-Land-Atmosphere Studies
George Mason University
Fairfax, Virginia, USA

•Land states (namely soil moisture*) can provide predictability in the window between deterministic (weather) and climate

(O-A) time scales.

•Land states (namely soil moisture*) can provide predictability in the window between deterministic (weather) and climate

(O-A) time scales.

 To have an effect, there must exist:

1. Memory of initial land states

*Snow too!

•Land states (namely soil moisture*) can provide predictability in the window between deterministic (weather) and climate

(O-A) time scales.

- 1. Memory of initial land states
- 2. Sensitivity of fluxes to land states, atmosphere to fluxes

•Land states (namely soil moisture*) can provide predictability in the window between deterministic (weather) and climate

(O-A) time scales.

- 1. Memory of initial land states
- 2. Sensitivity of fluxes to land states, atmosphere to fluxes
- 3. Sufficient variability

•Land states (namely soil moisture*) can provide predictability in the window between deterministic (weather) and climate

(O-A) time scales.

- 1. Memory of initial land states
- 2. Sensitivity of fluxes to land states, atmosphere to fluxes
- 3. Sufficient variability

L-A feedback stands on 2 legs

L-A feedback stands on 2 legs

 Terrestrial – When/where does soil moisture (vegetation, snow, etc.) control the partitioning of net radiation into sensible and latent heat fluxes?

L-A feedback stands on 2 legs

Arid

- Terrestrial When/where does soil moisture (vegetation, snow, etc.) control the partitioning of net radiation into sensible and latent heat fluxes?
- Atmosphere When/where do surface fluxes significantly affect boundary layer growth, clouds and precipitation?

Arid

AmeriFlux standardized Level 2 data

- AmeriFlux standardized Level 2 data
 - "Surface soil moisture" measurements
 vary in depth between stations from
 2.5 cm to a 0-30cm average.

- AmeriFlux standardized Level 2 data
 - "Surface soil moisture" measurements
 vary in depth between stations from
 2.5 cm to a 0-30cm average.
 - Sensible and latent heat flux (eddy covariance) measurements taken from 2.5m-70m aloft, depending on site.

- AmeriFlux standardized Level 2 data
 - "Surface soil moisture" measurements
 vary in depth between stations from
 2.5 cm to a 0-30cm average.
 - Sensible and latent heat flux (eddy covariance) measurements taken from 2.5m-70m aloft, depending on site.
 - All data averaged to daily (missing if ≤36 half-hourly reports are present for fluxes, ≤10 for soil moisture).

- AmeriFlux standardized Level 2 data
 - "Surface soil moisture" measurements
 vary in depth between stations from
 2.5 cm to a 0-30cm average.
 - Sensible and latent heat flux (eddy covariance) measurements taken from 2.5m-70m aloft, depending on site.

 Station must have >100 daily reports during JJA to be included in the analysis.

Models / data used

"Offline" Land model **Atmospheric Reanalyses Free-running GCMs** (constrained by DA) simulations (unconstrained) **Global Land Data CFS Seasonal Forecasts** Coupled Forecast System NCEP/EMC **Assimilation System** (JJAS) initialized from Reanalysis Noah2.7 land model CFSv2 AGCM **CFSR** All gridded Noah2.7 land model Noah2.7 land model observational forcing 0.31°x0.37° (T126) 0.94°x0.95° 1°x1° **MERRA-Land** GEOS5 "AMIP" **MERRA** Catchment land model **GEOS5 AGCM** Simulation MERRA + GPCP forcing Catchment land model Catchment land model 0.67°x0.5° 0.67°x0.5° 0.67°x0.5°

~30 years for each, covering ~1980s-2000s

GEOS5 data courtesy: Mike Bosilovich

Surface soil moisture memory

- All versions have <u>shorter</u> memory than AmeriFlux
 - CFS has strongest bias & RMSE most influenced by AGCM
 - CFSR has lowest bias & RMSE
 - Large errors for all at individual stations
- There are consistency issues (depth of measurements, point vs grid scale)

GSFC Surface soil moisture memory

JJA 7—day Lagged Autocorrelation of Surface Soil Moisture

- For contrast: MERRA/GEOS5 has <u>longer</u> memory than AmeriFlux
 - Very similar pattern to GLDAS/CFSR/CFS over CONUS
 - Lack of memory over Great Plains "hot spot" in both is a general issue for predictability!

Root zone soil moisture memory

JJA 7—day Lagged Autocorrelation of Layer 2 Soil Moisture

- All NCEP versions have longer memory than AmeriFlux
 - GLDAS closest to observations; CFSR largest bias
 - Depth of measurements may be a significant factor (25cm vs 10-15)
 - Large errors for all at individual stations is a more serious factor....
 - "Hole" over Great Plains is less evident

GSFC Root zone soil moisture memory

JJA 7—day Lagged Autocorrelation of Layer 2 Soil Moisture

NASA models maintain that "hole" over Great Plains

- Colored lines are indiv. Stations
- Black line with dots: avg. of 46

-ayer 1 (0-10cm)

-ayer 2 (10-40cm)

- Whiskers: ±1σ
- Diagonal: perfect match
- Caveats about scale, depth still apply.

 CFS: too little memory of surface soil moisture*

Observed AmeriFlux Lagged Autocorrelation

^{*} Consistent with finding of Dirmeyer (2013; CFSv2 Special Issue) showing CFS reforecast precip is too noisy, loses its correlation with ICs too quickly.

- CFS: too little memory of surface 50 soil moisture*
 CFSR very persistent
- CFSR very persistent for subsurface soil

* Consistent with finding of Dirmeyer (2013; CFSv2 Special Issue) showing CFS reforecast precip is too noisy, loses its correlation with ICs too quickly.

Center for Ocean-Land-Atmosphere Studies

- CFS: too little memory of surface 50 soil moisture*
 CFSR very persistent.
- CFSR very persistent for subsurface soil moisture
- Too little interstation spread

* Consistent with finding of Dirmeyer (2013; CFSv2 Special Issue) showing CFS reforecast precip is too noisy, loses its correlation with ICs too quickly.

- CFS: too little memory of surface soil moisture*
- CFSR very persistent for subsurface soil moisture
- Too little interstation spread
- Individual stations:
 all over the place

ayer 2 (10-40cm)

* Consistent with finding of Dirmeyer (2013; CFSv2 Special Issue) showing CFS reforecast precip is too noisy, loses its correlation with ICs too quickly.

What about that hole?

 In GLACE2 we saw that realistic soil moisture initialization improved T_{2m} forecast skill, especially over North America, but not over the "hot spot" [B].

• Figure is for COLA GCM, but conclusion was true for multi-model results as well (Koster et al. 2010).

Soil moisture – temperature coupling

- Coupling strength in COLA GCM (this is for temperature; hot spot extends further west than for precipitation).
- Area [B] has strong coupling strength. Why no skill there?

Initial soil moisture quality

 Compared to GLDAS, the initial soil moisture states are pretty good over the US (COLA ICs from an offline SSiB run in style of GSWP-2).

 Initialization does not appear to be the problem.

Quality of Initial SM(LA/O) Initialized: May 0.25 0.3 0.35 0.4 0.45

Soil moisture forecast skill

 However, the skill of soil moisture forecasts over the hot spot evaporates before two months pass.

What is happening?

 Remember our key predictability

ingredients: coupling, variability and memory

Low soil moisture memory

- As we saw, there
 seems to be weak soil
 moisture memory
 over the hot spot.
- On the other hand, memory is very strong over the west during summer.

SM Memory (GLDAS)

An ingredient is missing

•Land states (namely soil moisture*) can provide predictability in the window between deterministic (weather) and climate

(O-A) time scales.

- Memory of initial land states
- 2. Sensitivity of fluxes to land states, atmosphere to fluxes
- 3. Sufficient variability

ICs versus memory

 Early in seasonal forecasts, the pattern of soil moisture forecast skill looks like the pattern of initial soil moisture quality – reflects on the quality of LDAS.

 As time goes on, the skill pattern begins to resemble soil moisture memory. And temperature skill follows soil moisture skill in summer.

Conclusions

 Many models have difficulty reproducing observed patterns and strength of soil moisture memory, particularly an anomalous "hole" over the central US.

Conclusions

- Many models have difficulty reproducing observed patterns and strength of soil moisture memory, particularly an anomalous "hole" over the central US.
- Coupling and data assimilation affect memory; not just a land model problem.

Conclusions

- Many models have difficulty reproducing observed patterns and strength of soil moisture memory, particularly an anomalous "hole" over the central US.
- Coupling and data assimilation affect memory; not just a land model problem.
- Prediction experiments have shown initial land states can improve subseasonal forecasts, but underrepresentation of observed memory may be a barrier to realizing predictability as forecast skill.

To do:

- Add SCAN, other soil moisture data to analysis of memory to increase density (US), coverage (global).
- Quantify the effect of spatial scale on these estimates (can be accomplished with observational soil moisture data only).
- Expand to coupling metrics (soil moisture / surface flux / atmospheric state relationships)
- "Confront" models with these metrics [GEWEX]

